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Abstract: Rotary screw machine (or a machine on the screw) has been widely used in Russia in 1960-1970. In contrast 

to vehicles equipped with conventional types of propulsion, the dynamics of screw machines is poor. The 

uniqueness of the calculation of screw machines in the geometric linear movement of the screw 

1 INTRODUCCIÓN 

Previous screw-propelled vehicles were designed and 

built with a rigid or semirigid suspension system. 

Within the framework of the investigation the design 

of a screw-propelled vehicle has been proposed with 

a novel visco-elastic suspension capable of 

decreasing the dynamic loads on the vehicle’s body, 

which arise due to the unbalance of the screw rotors 

and the bearing surface. 

The author’s investigations in this direction have 

been carried out since 1996 resulting in the articles 

(Kuklina, 2011; Kuklina, 2013); for the last 20 years 

the mathematical theories obtained have been 

improved and put into practice. 

2 SCREW GEOMETRY 

Analysis of displacements of the screw-propelled 

vehicle permits one to obtain the scheme of 

interaction between the vehicle and the environment. 

Mathematical model displays a geometric line 

depending on the work front and rear suspensions. 

This effect is unique only for vehicles with rotor 

propulsion devices. The linearity of the contact of the 

bearing surface and the rotors is shown in Fig. 1. 

(Geometric parameters of the propulsion device of the 

screw-propelled vehicle when overcoming an 

obstacle.) 
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Figure 1: The geometric dependence of the rotor’s 

parameters. 

The vertical forces arising from irregularities of the 

pathway are transmitted to the vehicle’s body only 

through springing elements and dampers, as shown in 

Fig. 2 (three-mass equivalent system of dynamics of 

the screw-propelled vehicle). 

The coordinates describing the position of the 

sprung and unsprung masses undervibration 

conditions are chosen depending on the problem 

under consideration.Whenstudying the vibrations of 

the vehicle’s body, it is appropriate to choose 

coordinates𝑍0, 𝜑, 𝑋0, 𝛼, 𝑌0, 𝛽  i.e., the displacements 
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of the center of gravity of the sprung partand the 

angles of its rotation. It is also necessary to consider: 
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Figure 2: The three-mass vibration system of a screw-

propelled vehicle. 

 𝑧1, 𝑧2, 𝑧3, 𝑧4 - the coordinates of displacement 

of the body’s points above the axis of the front 

or back mountings of the rotor propulsion 

devices 

 𝑥1, 𝑥2, 𝑥3, 𝑥4  - the coordinates of horizontal 

lengthwise displacements of the body’s points 

of the front or back mountings of the rotor 

propulsion devices 

 𝑦1, 𝑦2, 𝑦3, 𝑦4  - the coordinates of horizontal 

lateral displacements of the body’s points of 

the front or back mountings of the rotor 

propulsion devices 

Investigating the vibration system shown in Fig. 2, 

we infer the dependencies between the parallel 

displacement vectors 𝑧1, 𝑧2, 𝑧3, 𝑧4 and the system’s 

resultant – 𝑍0 Fig. 3: 

𝑍0 =
∑ 𝑙𝑖𝑧𝑖𝑖

∑ 𝑙𝑖𝑖
                          (1) 

Using the above-mentioned formula, we obtain the 

system of dependencies between the geometric 

parameters of the sprung mass of the vehicle: 

 

�⃗�0 =
1

2𝐿
[(𝑧2𝑙2 − 𝑧1𝑙1) + (𝑧3𝑙2 − 𝑧4𝑙1)]

𝜑 =
1

𝐵
[(𝑥4 − 𝑥1) + (𝑥3 − 𝑥2)] +

1

𝐿
[(�⃗�1 − �⃗�2) + (�⃗�4 − �⃗�3)]

�⃗�0 =
1

𝐵
[(𝑥4𝑏2 − 𝑥1𝑏1) + (𝑥3𝑏2 − 𝑥2𝑏1)]

𝛼 =
1

𝐵
[(𝑧1 − 𝑧4) + (𝑧2 − 𝑧3)]

�⃗⃗�0 =
1

𝐿
[(�⃗�1𝑙1 − �⃗�2𝑙2) + (�⃗�4𝑙1 − �⃗�3𝑙2)]

𝛽 =
1

𝐿
[(𝑧2 − 𝑧1) + (𝑧3 − 𝑧4)] }

 
 
 
 

 
 
 
 

 (2) 

The vibrations of the unsprung masses of the 

vehicle (rotors) are given by the elements of 

displacements𝜉1, 𝜉2, 𝜉3, 𝜉4. 

The uniqueness of this vibration system isthat the 

displacements of the end points of the rotors are 

linearly dependent between themselves. During the 

collision with an obstacle, not only the front 

suspension is actuated but also the force is transmitted 

to the back suspension by the rotor’s body, therefore, 

the quantities 𝜉2, 𝜉3 influence the quantities of 

displacements𝜉1, 𝜉4 Fig. 2. 

The linear dependence of displacements of the end 

points of the rotors is represented in the system of 

equations 3. 

𝜉1 = sin 𝛽 ∙ 𝐿 − 𝜉2
𝜉4 = sin 𝛽 ∙ 𝐿 − 𝜉3

}
𝜉2 = sin 𝛽 ∙ 𝐿 − 𝜉1

𝜉3 = sin 𝛽 ∙ 𝐿 − 𝜉4
}     (3) 

To derive the dynamical equations, one should 

apply the forces𝑍𝑛, 𝑋𝑛 , 𝑌𝑛acting on the masses of the 

vehicle (Fig. 2). The force𝑍𝑛transmitted through the 

suspension consists of two terms: 𝑍𝑝  - from the 

springing element and𝑍𝑎  - from the damper. The 

forces 𝑍𝑛, 𝑋𝑛 𝑎𝑛𝑑  𝑌𝑛 replace the action of the 

suspension and their quantities are interdependent. 

We obtain the system of equations 4 describing the 

dependencies of dynamic forces.

 

 

𝑍𝑛1 = 2𝐶𝑝1(𝑧1 − 𝜉1) + 2𝑘1(�̇�1 − 𝜉1̇);   𝑍𝑛2 = 2𝐶𝑝2(𝑧2 − 𝜉2) + 2𝑘2(�̇�2 − 𝜉2̇);

𝑍𝑛3 = 2𝐶𝑝3(𝑧3 − 𝜉3) + 2𝑘1(�̇�3 − 𝜉3̇);   𝑍𝑛2 = 2𝐶𝑝3(𝑧3 − 𝜉3) + 2𝑘3(�̇�3 − 𝜉3̇);

𝑋𝑛1 = 𝑍𝑛1 tan 𝛽;  𝑋𝑛2 = 𝑍𝑛2 tan𝛽;  𝑌𝑛1 = 𝑍𝑛1 tan 𝛼;  𝑌𝑛2 = 𝑍𝑛2 tan 𝛼;  
𝑋𝑛3 = 𝑍𝑛3 tan𝛽;  𝑋𝑛4 = 𝑍𝑛4 tan𝛽;  𝑌𝑛3 = 𝑍𝑛3 tan 𝛼;  𝑌𝑛4 = 𝑍𝑛4 tan 𝛼.  }

 
 

 
 

                            (4)

3 DIFFERENTIAL EQUATION OF 

OSCILLATIONS 

Differential equations of vibrations are obtained by 

using Lagrange’s equations. 

For sprung and unsprung masses𝑀 and𝑚1,2 the 

following systems of equations ofequilibrium are 

derived. 

(𝑚𝜉1̈ − 2𝐶𝑝1[𝑧1 − 𝜉1] − 2𝑘1[�̇�1 − 𝜉1̇]) +

+(𝑚𝜉2̈ − 2𝐶𝑝2[𝑧2 − 𝜉2] − 2𝑘2[�̇�2 − 𝜉2̇]) = 𝐻𝑧(𝑡);

(𝑚𝜉4̈ − 2𝐶𝑝4[𝑧4 − 𝜉4] − 2𝑘4[�̇�4 − 𝜉4̇]) +

+(𝑚𝜉3̈ − 2𝐶𝑝3[𝑧3 − 𝜉3] − 2𝑘3[�̇�3 − 𝜉3̇]) = 𝐻𝑧(𝑡)}
 
 

 
 

  (5) 



The equations of motion for the coordinate systems 

(Figs. 1 and 2) are derivedusing the formulas of the 

systems 3 and 4 and the expressions for𝑍𝑛which are 

written in terms of the coordinates𝑧1, 𝑧2, 𝑧3, 𝑧4. 

After substitution of theseexpressions into the 

differential equations of equilibrium we obtain the 

systems of differential equations 5 and 6 which 

represent the most complete and accuratecalculation 

of (linear and angular) displacements of points of the 

sprung and unsprungmasses of the screw-propelled 

vehicle.

 

𝑀�̈�0 + (2𝑘1[�̇�1 − 𝜉1̇] + 2𝐶𝑝1[𝑧1 − 𝜉1]) +

(2𝑘2[�̇�2 − 𝜉2̇] + 2𝐶𝑝2[𝑧2 − 𝜉2]) + (2𝑘3[�̇�3 − 𝜉3̇] + 2𝐶𝑝3[𝑧3 − 𝜉3]) +

+(2𝑘4[�̇�4 − 𝜉4̇] + 2𝐶𝑝4[𝑧4 − 𝜉4]) = 𝐻𝑧(𝑡);

𝑀�̈�0 + tan𝛽 (2𝑘1[�̇�1 − 𝜉1̇] + 2𝐶𝑝1[𝑧1 − 𝜉1]) +

+ tan𝛽 (2𝑘2[�̇�2 − 𝜉2̇] + 2𝐶𝑝2[𝑧2 − 𝜉2]) +

+ tan𝛽 (2𝑘3[�̇�3 − 𝜉3̇] + 2𝐶𝑝3[𝑧3 − 𝜉3]) +

+ tan𝛽 (2𝑘4[�̇�4 − 𝜉4̇] + 2𝐶𝑝4[𝑧4 − 𝜉4]) = 𝐻𝑥(𝑡);

𝑀�̈�0 + tan 𝛼 (2𝑘1[�̇�1 − 𝜉1̇] + 2𝐶𝑝1[𝑧1 − 𝜉1]) +

+ tan𝛼 (2𝑘2[�̇�2 − 𝜉2̇] + 2𝐶𝑝2[𝑧2 − 𝜉2]) +

+ tan𝛼 (2𝑘3[�̇�3 − 𝜉3̇] + 2𝐶𝑝3[𝑧3 − 𝜉3]) +

+ tan 𝛼 (2𝑘4[�̇�4 − 𝜉4̇] + 2𝐶𝑝4[𝑧4 − 𝜉4]) = 𝐻𝑦(𝑡);

𝑀𝜌𝑧
2�̈� +

(

 
 

2𝐶𝑝4𝑏2[𝑧4 − 𝜉4]+2𝑘4𝑏2[�̇�4 − 𝜉4̇] +

+2𝐶𝑝3𝑏2[𝑧3 − 𝜉3]+2𝑘3𝑏2[�̇�3 − 𝜉3̇] −

−2𝐶𝑝1𝑏1[𝑧1 − 𝜉1]−2𝑘1𝑏1[�̇�1 − 𝜉1̇] −

−2𝐶𝑝2𝑏1[𝑧2 − 𝜉2]−2𝑘2𝑏1[�̇�2 − 𝜉2̇] )

 
 
tan 𝛽 +

+

(

 
 

2𝐶𝑝1𝑙1[𝑧1 − 𝜉1]+2𝑘1𝑙1[�̇�1 − 𝜉1̇] +

+2𝐶𝑝4𝑙1[𝑧4 − 𝜉4]+2𝑘4𝑙1[�̇�4 − 𝜉4̇] −

−2𝐶𝑝2𝑙2[𝑧2 − 𝜉2]−2𝑘2𝑙2[�̇�2 − 𝜉2̇] −

−2𝐶𝑝3𝑙2[𝑧3 − 𝜉3]−2𝑘3𝑙2[�̇�3 − 𝜉3̇] )

 
 
tan𝛼 = 𝑀𝜑(𝑡)

𝑀𝜌𝑧
2�̈� + 2𝐶𝑝1𝑏1[𝑧1 − 𝜉1]+2𝑘1𝑏1[�̇�1 − 𝜉1̇]+2𝐶𝑝2𝑏1[𝑧2 − 𝜉2] +

+2𝑘2𝑏1[�̇�2 − 𝜉2̇] − 2𝐶𝑝4𝑏2[𝑧4 − 𝜉4] − 2𝑘4𝑏2[�̇�4 − 𝜉4̇] −

−2𝐶𝑝3𝑏2[𝑧3 − 𝜉3] − 2𝑘3𝑏2[�̇�3 − 𝜉3̇] = 𝑀𝛼(𝑡)

𝑀𝜌𝑧
2�̈� + 2𝐶𝑝1𝑙1[𝑧1 − 𝜉1]+2𝑘1𝑙1[�̇�1 − 𝜉1̇]+2𝐶𝑝4𝑙1[𝑧4 − 𝜉4] +

+2𝑘4𝑙1[�̇�4 − 𝜉4̇] − 2𝐶𝑝2𝑙2[𝑧2 − 𝜉2] − 2𝑘2𝑙2[�̇�2 − 𝜉2̇] −

−2𝐶𝑝3𝑙2[𝑧3 − 𝜉3] − 2𝑘3𝑙2[�̇�3 − 𝜉3̇] = 𝑀𝛽(𝑡) }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            (6)

 

The system of equations 6 shows the calculation of 

forces and describes thedynamics of the actuated 

mechanisms of visco-elastic suspensions. The forces 

horizontal to𝑋and𝑌, are then reduced to the vertical 

forces via trigonometryequations 𝑍. 

The solution to the systems of equations 5 and 6 by 

numerical methods becomes possible if we know the 

values of the vibrations, i.e., if the boundary values of 

the 

quantities𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑍0, 𝑋0, 𝑌0, 𝜑, α, β, 𝜉1, 𝜉2, 𝜉3, 𝜉4. 

Have been obtainedexperimentally, the vehicle’s 

parameters (𝐿and𝐵), have been specified in advance, 

and one should determine the drag coefficients of the 

dampers 𝑘1, 𝑘2, 𝑘3, 𝑘4 andthe spring rate for the 

elements𝐶𝑝1, 𝐶𝑝2, 𝐶𝑝3, 𝐶𝑝4. Having an exact solution 

to the system of equations 6, we can find 

numerically𝐶𝑝. 

Assuming that the screw-propelled vehicle is 

geometrically symmetric and thecharacteristics of the 

visco-elastic suspension are completely of the same 

type, performing mathematical operations permits us 

to reduce the system of equations 5and 6 to the form 

of the systems of differential equations 7 and 8. 

Thus, the generalized systems of differential 

equationstake the form for the unsprung masses: 
𝑚(2�̈�1 + sin𝛽 𝐿)⁄ + 2𝑘(2�̇�1 − (�̇�1 + �̇�2) + sin𝛽 𝐿⁄ ) +

+2𝐶𝑝(2𝜉1 − (𝑧1 + 𝑧2) + sin𝛽 𝐿)⁄ = 𝐻𝑧(𝑡);

𝑚(2�̈�4 + sin𝛽 𝐿⁄ ) + 2𝑘(2�̇�4 − (�̇�4 + �̇�3) + sin𝛽 𝐿⁄ ) +

+2𝐶𝑝(𝜉4 − (𝑧4 + 𝑧3) + sin 𝛽 𝐿⁄ ) = 𝐻𝑧(𝑡). }
 
 

 
 

 (7) 

And for the sprung body of the vehicle:

 



𝑀�̈�0 + 2𝑘(�̇�1 + �̇�2 + �̇�3 + �̇�4) − 2𝑘(𝜉1̇ + 𝜉2̇ + 𝜉3̇ + 𝜉4̇) +

+2𝐶𝑝(𝑧1 + 𝑧2 + 𝑧3 + 𝑧4) − 2𝐶𝑝(𝜉1 + 𝜉2 + 𝜉3 + 𝜉4) = 𝐻𝑧(𝑡);

𝑀𝜌𝑧
2�̈� + 2𝐶𝑝𝑏(𝑧1 + 𝑧2 − 𝑧4 − 𝑧3) − 2𝐶𝑝𝑏(𝜉1 + 𝜉2 − 𝜉4 − 𝜉3) +

+2𝑘𝑏(�̇�1 + �̇�2−�̇�4 − �̇�3) − 2𝑘𝑏(𝜉1̇ + 𝜉2̇ − 𝜉4̇ − 𝜉3̇) = 𝑀𝛼(𝑡)

𝑀𝜌𝑧
2�̈� + 2𝐶𝑝𝑙(𝑧1 + 𝑧4 − 𝑧2 − 𝑧3) − 2𝐶𝑝𝑙(𝜉1 + 𝜉4 − 𝜉2 − 𝜉3) +

+2𝑘𝑙(�̇�1 + �̇�4 − �̇�2 − �̇�3) − 2𝑘𝑙(𝜉1̇ + 𝜉4̇ − 𝜉2̇ − 𝜉3̇) = 𝑀𝛽(𝑡) }
 
 
 

 
 
 

                                            (8)

 

Evaluation of solutions to the systems of 

differential equations was performedusing the 

software for modern mathematical calculations 

MathCAD in solving theCauchy problem. The result 

of the solution was the amplitude-frequency 

characteristicof the visco-elastic suspension. 

The amplitude-frequency characteristics are shown 

in Fig. 3 (amplitude-frequencycharacteristics at point 

2 of attachment of the visco-elastic suspension and the 

rotorpropulsion devices for various values of the 

spring rates and drag coefficients ofdampers). 

The analysis and construction of many amplitude-

frequency characteristics willallow theorists and 

practitioners to choose the best values for the spring 

rates anddrag coefficients of dampers. Depending on 

the requirements, one can manipulate theparameters of 

the visco-elastic suspension and specify the comfort 

characteristics ofthe driver’s operation. 

Figure 3: The amplitude-frequency characteristic for the 

visco-elastic suspension of the screw–propelled vehicle. 

4 MACHINE DESIGN 

SOLUTIONS 

To ensure the best possible contact between the 

propulsion devices and thebearing surface, a new 

design of the screw-propelled vehicle (Fig. 4) is 

developedwithin the framework of this study. This 

design comprises a body (1), a rotorpropulsion device 

(5), a visco-elastic suspension (12) of rotors with 

springs anddampers, wherein the dampers (13) and 

springs (14) of the visco-elastic suspensionare aligned 

and rigidly attached to the vehicle’s frame and 

coupling elements (15) installed on a fixed spindle (6) 

bearing electric motors (7) and harmonic driveunits 

(8), the latter are rigidly connected with the rotor (5) 

through the bushes (9) towhich trapezoidal roddings 

(11, 16) hinged to the frame (10) elements are 

attached. 

This vehicle has not two but four rotor propulsion 

devices, which, by virtue ofthe visco-elastic 

suspension, provide the greatest tractive force due to 

an increasedcontact point between the rotors and the 

bearing surface. 

For the purpose of increasing the vehicle’s 

vibroprotection and the comfort ofthe driver, quite a 

number of design concepts for hydraulic vibratory 

bearings (Gordeev, Kuklina, 2023; Kuklina, 2022) 

have been proposed. Evaluation of the quantities of 

vibration displacements of rotorpropulsion devices in 

the bearings by the method of measurement without 

contactbecomes possible through the application of an 

ultrasonic phase vibrationtransducer (Gordeev, 

Kuklina, 2020). The design concept was awarded the 

bronze medal in Seoul. 

Thus, significant practical and theoretical 

experience has been gained ininvestigating and 

adjusting the parameters of the visco-elastic 

suspension of vehicleshaving a linear contact between 

the propulsion devices and the bearing surface. 

 

Figure 4: The design of the screw-propelled vehicle with 

four propulsion devices. 
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